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Himbacine (1), a tetracyclic piperidine alkaloid isolated from
the bark of the Australian pine tree ofGalbulimimaspecies,1,2

has attracted considerable attention due to its interesting
structural features and promising biological property as a
muscarinic receptor antagonist.3 Positive modulation of synaptic
acetylcholine levels by selective inhibition of presynaptic
muscarinic receptors is a promising therapeutic approach for
the treatment of senile dementia associated with Alzheimer’s
disease.4 Himbacine is a potent inhibitor of the muscarinic
receptor of M2 subtype with 20-fold selectivity toward the M1
receptor.5 However, the paucity of natural himbacine as well
as the inherent structural complexity of this molecule has
precluded exhaustive optimization of its biological properties
by structural modification. Hart, Wu, and Kozikowski have
published a total synthesis of himbacine in 20 linear steps.6a A
short, practical synthesis of himbacine would greatly facilitate
research in the therapeutic application of this compound. We
wish to report a highly convergent and concise synthesis of (+)-
himbacine (Scheme 2) in 11 linear steps and 9.7% yield starting
from readily accessible (S)-2-methylpiperidineL-tartrate (3).
Our approach envisions, as the key step, an enantioselective,

all-encompassing intramolecular Diels-Alder reaction7 of the
appropriately functionalized molecular ensemble11, which bears
the entire latent carbon framework and functional group
substitution of himbacine (Scheme 1). Several points are worth
noting regarding this approach. First, we expected that the
vinylcyclohexenyl region of11would act as the diene moiety
in the intramolecular Diels-Alder reaction in preference to the
piperidinyl substituted diene, since it is more likely to adopt
the required cisoid conformation. The methyl group at C3 would
serve to confer thes-cisorientation to the ester linkage, thereby
facilitating the cyclization.8 The face selectivity of the C3a-

C9abond formation in the intramolecular Diels-Alder reaction
would be dictated by the preferred conformationB of the
intermediate11, which avoids A1,3 strain. During the Diels-
Alder process, the absolute chirality at C3 would be translated
to R-configuration at C3a which, in turn, would engender the
required absolute configurations at C4 and C4a and, after
epimerization, at C9a.9 Finally, considering the fact that the
pendenttrans double bond is sterically encumbered by the
presence of the tricyclic ring system and theN-Boc-substituted
piperidine, we expected to achieve regioselective reduction of
the internal double bond.10 This reduction would occur ste-
reoselectively from the less hinderedR-face to produce the
requiredR-configuration at C8a.
The implementation of the above plan is outlined in Scheme

2. Commercially available 2-methylpiperidine was resolved
using L-tartaric acid.11,12 The tartrate salt3 was directly
converted toN-Boc-protected (S)-2-methylpiperidine by treat-
ment with excess of Boc anhydride in 96% yield.13 Treatment
of piperidine derivative4 with sec-butyllithium followed by
quenching with dimethylformamide according to the Beak
procedure14 yielded thetrans-substituted piperidinyl aldehyde
5 in 86% yield. Homologative iodovinylation of aldehyde5
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according to the Takai protocol15 using chromous chloride16 and
iodoform yielded the vinyl iodide6 in 50% yield. Palladium-
mediated coupling17 of vinyl iodide 6 with commercially
available18 (S)-3-butyn-2-ol (7) gave the enyne derivative8 in
81% yield. Selective reduction of the triple bond of8 was
achieved using catalytic hydrogenation over Lindlar catalyst in
the presence of quinoline.19

The carboxylic acid derivative10was readily prepared from
cyclohexane carboxaldehyde in an overall 66% yield in three

steps according to the reported procedure20 (eq 1). Esterification

of alcohol9with the acid10yielded the Diels-Alder precursor
11 in 91% yield.19 Thermal cyclization of a solution of
compound11 in toluene at 186°C for 8 h generated exclusively
theexoadduct12which, under reaction conditions, underwent
partial isomerization to thecis lactone13.21

A brief treatment of the reaction mixture with excess of 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) effected complete isomer-
ization of12 to thecis lactone13. Regioselective reduction of
the internal double bond of13 occurred stereoselectively from
the less hinderedR-face under catalytic hydrogenation over
Raney nickel22 to yield the previously reportedN-Boc-himbeline
derivative14.6a,23 N-Deprotection of compound14yielded (+)-
himbeline (2). Direct conversion of compound14 to (+)-
himbacine was achieved in a one-pot procedure by deprotection
with trifluoroacetic acid followed by reductive methylation6a

using aqueous formaldehyde and sodium cyanoborohydride.
Both synthetic himbeline and himbacine showed spectroscopic
properties identical to those reported for the natural products
as well as comparable optical rotations.24,25

In conclusion, we have completed the total synthesis of
himbacine in 11 linear steps from readily accessible (S)-2-
methylpiperidineL-tartrate (3) in 9.7% yield. With this practical
synthesis of himbacine now in hand, the continuing exploration
of the promising biological property of this class of compounds
will be aided.
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